1.
B is directly proportional to A.
When $A = 6$, $B = 72$.

(a) Find an equation for B in terms of A.

(b) Find the value of B when $A = 4.5$.

2.
D is directly proportional to C.
When $C = 5$, $D = 90$.

(a) Find an equation for D in terms of C.

(b) Find the value of D when $C = 7$.

(c) Find the value of C when $D = 126$.
3.
F is directly proportional to E^2.
When $E = 3$, $F = 108$.

(a) Find an equation for F in terms of E.

(b) Find the value of F when $E = 2$.

(c) Find the value of E when $F = 1200$.

4.
G is directly proportional to \sqrt{H}.
When $H = 400$, $G = 60$.

(a) Find an equation for G in terms of H.

(b) Find the value of G when $H = 64$.

(c) Find the value of H when $G = 75$.
5.
Q is inversely proportional to P.
When P = 0.5, Q = 16.

(a) Find an equation for Q in terms of P.

(b) Find the value of Q when P = 4.

(c) Find the value of P when Q = 1.6.

6.
M is inversely proportional to N.
When N = 6, M = 11.

(a) Find an equation for M in terms of N.

(b) Find the value of N when M = 132.

(c) Find the value of M when N = 22.
7.
O is inversely proportional to P^3.
When $P = 3$, $O = 2$.

(a) Find an equation for O in terms of P.

(b) Find the value of O when $P = 2$.

(c) Find the value of P when $O = 432$.

8.
T is inversely proportional to \sqrt{U}.
When $U = 16$, $T = 20$.

(a) Find an equation for T in terms of U.

(b) Find the value of U when $T = 160$.

(c) Find the value of T when $U = 64$.
9.
W is directly proportional to \(V^2 \).
When \(V = 5 \), \(W = 400 \).

(a) Find an equation for \(W \) in terms of \(V \).

(b) Find the value of \(W \) when \(V = 1.5 \).

(c) Find the value of \(V \) when \(W = 6 \). Give your answer to 1 decimal place.

10.
Y is inversely proportional to \(\sqrt[3]{X} \).
When \(X = 125 \), \(Y = 22 \).

(a) Find an equation for \(Y \) in terms of \(X \).

(b) Find the value of \(Y \) when \(X = 1,000 \).

(c) Find the value of \(X \) when \(Y = 13 \). Give your answer to 3 significant figures.
11.
\(e \propto r^2. \)
Complete the table.

<table>
<thead>
<tr>
<th>e</th>
<th>750</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>10</td>
<td>4</td>
</tr>
</tbody>
</table>

12.
\(L \propto \frac{1}{M}. \)
Complete the table.

<table>
<thead>
<tr>
<th>L</th>
<th>0.5</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>0.25</td>
<td>20</td>
</tr>
</tbody>
</table>
13.
\[P \propto \frac{1}{t^2}. \]
Complete the table.

<table>
<thead>
<tr>
<th>P</th>
<th>0.8</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>4</td>
<td>0.1</td>
</tr>
</tbody>
</table>
16. The speed that a long distance runner runs at is inversely proportional to the time they have been running for. After running for 2 hours, the runner is running at 3 metres per second. Work out the speed at which the runner is running after 150 minutes.

17. The distance, D (in kilometres), travelled by a space shuttle is directly proportional to the square of the amount of fuel carried, F (in gallons). On Mission 1, the shuttle carried 500 gallons of fuel and travelled 6.5×10^5 kilometres. On Mission 2, the shuttle travelled 8.8×10^6 kilometres. Find the number of gallons of fuel carried by the shuttle on Mission 2, to the nearest gallon.