DENSITY, MASS AND VOLUME – PRACTICE QUESTIONS CALCULATOR ALLOWED

1.

A marble has a mass of 5 grams and a volume of 2 cm^3 .

Work out the density of the marble, in g/cm^3 .

D V density = mass
$$\div$$
 volume
= $5 \div 2$
= 2.5 g/cm^3

A block of wood has a density of 0.75 g/cm^3 and a volume of 120 cm^3 .

Work out the mass of the block of wood, in grams.

$$0.75 \times 120 = 90 \text{ grams}$$

3.

2.

A brick has a density of 500 kg/m³ and a mass of 10.5 kilograms.

Work out the volume of the brick, in m³.

$$10.5 \div 500 \equiv 0.021 \, \text{m}^3$$

4.

A metal rod has a mass of 150 grams and a volume of 25 cm³.

Work out the density of the rod, in g/m^3 .

$$150 \div 25 = 6 g/m^3$$

A gold bar has a density of 19 g/cm^3 and a mass of 9,500 grams.

Work out the volume of the gold bar, in cm³.

$$9500 \div 19 = 500 \text{ cm}^3$$

6.

A piece of aluminium has a density of 2.6 g/cm^3 and a volume of 15 cm³.

Work out the mass of the aluminium, in grams.

7.

A cricket ball has a density of 0.8 g/cm^3 and a mass of 165 grams.

Work out the volume of the cricket ball, in cm³.

 $165 \div 0.8 = 206.25 \text{ cm}^3$

8.

A piece of carbon has a density of 2.2 g/cm³ and a volume of 70 cm³.

Work out the mass of the piece of carbon, in grams.

 $2.2 \times 70 = 154 \text{ grams}$

9.

A cube has side length 8 cm and has a mass of 960 grams.

Work out the density of the cube, in g/cm^3 .

$$Voume = 8^3 = 512 \text{ cm}^3$$

960 $\div 512 = 1.875 \text{ g/cm}^3$

10. Pictured below is a block of wood.

The block has a mass of 288 grams.

Work out the density of the block of wood, in g/cm^3 .

Volume = 5 × 12 × 4 = 240 cm³

 $288 \div 240 = 1.2 g/cm^3$

The density of the metal sheet is 5.5 g/cm^3 .

Work out the mass of the metal sheet, in grams.

 $Volume = 1.2 \times 42 \times 15 = 756 \text{ cm}^3$ 756 × 5.5 = 4,158 grams

Pictured below are two blocks - Block A and Block B.

Block A is made from tin and Block B is made from tungsten. Tin has a density of 7.3 g/cm³. Tungsten has a density of 19.3 g/cm³.

Which block has the largest mass - Block A or Block B?

13.

Pictured below is a block of wood.

The block of wood has a mass of 980 grams.

Work out the density of the block of wood, to 2 decimal places.

$$Volume = \frac{23 \times 38}{2} \times 3 = 1311 \text{ cm}^{3}$$

$$980 \div 1311 = 0.74752...$$

$$= 0.75 \text{ g/cm}^{3}$$

Pictured below is a metal cylinder.

The cylinder has a mass of 21,000 kilograms.

Work out the density of the cylinder, in kg/m^3 . Give your answer to 4 significant figures.

Radius =
$$2, 9 \div 2 = 1.45 \text{ m}$$

Volume = $\pi \times 1.45^2 \times 1.4 = 9.247 \dots \text{ m}^3$
 $21,000 \div 9.247 \dots = 2,270.938 \dots$
 $= 2,271 \text{ kg/m}^3$

15.

Pictured below is a block of wood.

The density of the wood is 540 kg/m^3 . The block has a mass of 28,000 kg.

Find x, to 2 significant figures.

 $Volume = 28,000 - 540 = 51.851 m^3$ $x = 51.851 \div 3.6 \div 1.9$ = 7.58068 ... =7.6 M

14.

Pictured below is a cube.

The cube has a mass of 6.5 kilograms and a density of 15.4 g/cm^3 .

Find the side length of the cube, to 2 significant figures.

Volume = 6,500÷15.4 = 422.0779....cm^s
side length =
$$\sqrt[3]{422.0779...}$$

= 7.5012...
= 7.5 cm

17.

Pictured below is a triangular prism.

The triangular prism has a mass of 320 kilograms and a density of 4 g/cm^3 .

Find x, to 2 significant figures.

Volume =
$$320,000 \div 4$$

= $80,000 \text{ cm}^3$
Area of triangle = $140 \times 310 = 21,700 \text{ cm}^2$
 $Z = 80,000 \div 21,700$
= $3.6866...$
= 3.7 m

Pictured below is a cylinder.

Nicola is trying to work out whether the cylinder is made of silicon or carbon. The density of silicon is 2.33 g/cm^3 and the density of carbon is 2.26 g/cm^3 . The cylinder has a mass of 112 kilograms.

Which material do you think the cylinder is made of?

Radius =
$$24 \div 2 = 12 \text{ cm}$$

Volume = $TI \times 12^2 \times 110 = 49,762.82763 \text{ cm}^3$
Density = $112,000 \div 49,762.82763$
 $= 2.25067...g/\text{cm}^3$
Carbon, because its density is closer to $2.2bg/\text{cm}^3$

19.

Pictured below are two solids - Solid A and Solid B.

Solid A has a density of 1.7 g/cm^3 . Solid B has a density of $2,750 \text{ kg/m}^3$.

Which solid has the largest mass - Solid A or Solid B?

A: Volume =
$$36 \times 68 \times 11 = 26,928 \text{ cm}^3$$

Mass = $26,928 \times 1.7 = 45,777.6 \text{ grams}$
B: Volume = $0.45 \times 0.8 \times 0.09 = 0.0162 \text{ m}^3$
Mass = $2,750 \times 0.0162 = 44.55 \text{ kg}$
= 44,550 grams
Solid A has the largest mass.

Material A has a density of 2.64 g/cm³. Material B has a density of 1.91 g/cm³.

2 kilograms of Material A and 950 grams of Material B form Material C.

Work out the density of Material C, to 2 decimal places.

A:
$$Volume = 2,000 \div 2.64 = 757.57 \text{ cm}^3$$

B: $Volume = 950 \div 1.91 = 497.382199 \text{ cm}^3$
C: $Volume = 757.57 \div 497.382199$
 $= 1,254.9579.57 \text{ cm}^3$
Mass = 2,000 + 950 = 2,950 grams
Density = 2,950 \div 1,254.957957
 $= 2.35067...$
 $= 2.359/\text{cm}^3$

21.

Liquid A has a density of 1.08 g/cm^3 . Liquid B has a density of x g/cm³.

750 cm³ of Liquid A is mixed with 990 cm³ of Liquid B to form Liquid C. The mass of Liquid C is 1.7 kilograms.

Find the density of Liquid B, to 2 decimal places.

A: Mass =
$$750 \times 1.08 = 810g$$

C: volume = $750 + 990 = 1,740 \text{ cm}^3$
B: Mass = $1,700 - 810 = 890g$
Density = $890 \div 990$
= 0.89
= $0.90g/\text{cm}^3$

20.